
H. I=£AUPTMAN AND J .  K A R L E  97 

~ may be chosen to be a ~ag. Then the values of all 
phases ~ugg and ~gua, being linearly semi-dependent 
on ~ ,  are determined. Next, F~ may be chosen to be 
a q~uu. Then the values of all phases q~uu and ~ u ,  
linearly semi-dependent on ~ ,  are determined. Finally 
the values of all phases q~ugu and q~guu, linearly semi- 
dependent on the pair qh, ~2, are determined. 

6.2. Type 2P 1 

The first paragraph of 6.1 carries over verbatim for 
Type 2P~ with the single exception that  the semin- 
variant phases are now of the form ~ggg and q~uuu. 

As an illustration of the specification of origin, 
~1 may be chosen to be a ~u~g. The values of all phases 
q~uug and ~ea~, linearly semi-dependent on ~ ,  are 
determined. Next, ~ may be chosen to be a ~a~. 
Then the values of all phases q~guu and ~ugg, linearly 
semi-dependent on ~2, are determined. Finally the 
values of all phases q)ugu and ~g~a, linearly semi- 
dependent on the pair ~ ,  ~ ,  are determined. 

6.3. Type 3P 2 
The phases which are the structure seminvariants 

are of the form ~ggg, T~ug, ~ug~ and q~guu. The value of 
any phase ~ ,  not of this form, may be specified 
arbitrarily. Once this is done, the values of all phases, 
of necessity linearly semi-dependent on ~1, are deter- 
mined. For example, T1 may be chosen to be ~ggu. 

6.4. Type 3P3 
The phases which are the structure seminvariants 

are of the form q~ggg, q~ggu, q)uug, and q)uuu. The value 
of any phase ~1, not of this form, may be specified 
arbitrarily. Once this is done, the values of all phases, 

of necessity linearly semi-dependent on qh, are deter- 
mined. For example, ~1 may be chosen to be ~uga. 

6.5. Type 4P 
Every phase is a structure seminvariant and its 

value is determined by the observed intensities. The 
value of no phase may be specified arbitrarily. In this 
type, the choice of the functional form of the structure 
factor is equivalent to the unique selection of the 
origin. 

7. Concluding remarks  

Monograph I (1953) and this paper present a detailed 
procedure for specifying the origin in any centro- 
symmetric space group. This has been done by 
demonstrating the existence of relationships between 
the observed intensities and values of the phases via 
the structure seminvariants. With the specific state- 
ment of the nature of these relationships, it is possible 
to go directly from observed intensities to the values 
of phases. I t  will be the aim of future publications to 
employ the formulas of our two recent papers (1958) 
to obtain specific procedures for phase determination 
for all the space groups. 
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Structure factors have been calculated for some helical polypeptide models, assuming random 
angular orientations of the molecules about the helical axis. The computations were carried out 
on IBM punched-card machines and a brief description is given of the method of computation. 

Introduction 

The theory of X-ray diffraction by helical molecules 
has been developed by Cochran, Crick & Vand (1952), 
who applied it to verify the presence of the s-helix 
(Pauling, Corey & Branson, 1951) in the synthetic 
polypeptide, poly-y-methyl-L- glutamate. Since then, 
helical structures have been proposed for a number of 

ACI2 

molecules, e.g. desoxyribose nucleic acid (Watson & 
Crick, 1953); collagen (Rich & Crick, 1955). Although 
many helical structures have been proposed with no 
more than a qualitative prediction of the calculated 
intensities, it is important to point out that  a structure 
with satisfactory screw dimensions will not neces- 
sarily result in a correct distribution of layer-line 
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intensities. A quick method of obtaining calculated 
helical intensities is therefore desirable so t ha t  trial 
s t ructures  obtained from model building m a y  be 
checked by comparing the calculated with the ob- 
served intensities. 

The calculated intensi ty of diffraction by a proposed 
fiber s t ructure  can be obtained either by computat ion,  
using the s t ructure-factor  expression of Cochran et al. 
(1952) ; or it  can be obtained optically with the optical 
diffraction spectrometer  (Hughes & Taylor,  1953). 
Stokes (1955) has discussed the theoretical  background 
for the use of the  optical diffraction spectrometer  for 
producing the optical t ransform of a helical s tructure.  
This method  provides only approx imate  s t ructure  
factors for comparison with the  observed X - r a y  dif- 
f ract ion photograph,  because of the difficulty of deal- 
ing with overlapping a toms and with the differences 
in scattering factors. In  addition, a number  of pro- 
jected views must  be summed if one wishes to produce 
a t ransform in which there is random angular  orienta- 
t ion of the  molecules about  the helical axis. The t ime 
spent in calculating and plott ing these views can be 
considerable. 

We have  therefore prepared  a punched-card method 
for calculating fiber diffraction pa t te rns  for helical 
s tructures with random angular  orientation. 

There have  been several helical configurations pro- 
posed for polypeptide chains, including the a and y 
helices (Pauling et al., 1951), the ~-helix (Low & 
Baybu t t ,  1952) and several others. Wi th  the ex- 
ception of the  ~ helix, Fourier  t ransforms have not  
been calculated for these models. In  order to show the 
differences in diffraction pa t te rns  to be expected 
from them,  we have computed the helical t ransforms 
for several such helices. 

T h e  a v e r a g e d  i n t e n s i t y  e x p r e s s i o n  

The Fourier  t ransform of a helical molecule with 
periodicity c along its axis m a y  be expressed as the 
sum of a series of Bessel function Jn for each layer 
line 1 (Cochran et al., 1952). Thus, a t  a point  in recip- 
rocal space with cylindiical coordinates (R, F, 1/c), 
the Fourier  t ransform is 

F ( R ,  v/, 1/c) = ~v_~F f j j~ , (2~r~R) 
n j 

Structure (1) 7 helix 

where r~, ~ ,  z~ are the cylindrical coordinates of the  
j t h  a tom of the asymmetr ic  uni t  which has  atomic 
scattering factor  fi ,  and the summat ion  over n is for 
all the allowed values of n on the layer line of index 1. 

This expression can be wri t ten 

F ( R ,  y~, l/c) = ~ '  ( A n + i n n )  exp in~p , (2) 
n 

where 

A~ -- ~ f i J .  (2~r~R) cos n(~-~-  ~v~) + - -  , 
/ 

Bn = .-~ f ,  J n ( 2 ~ r , R )  sin {n (½~-c f , )  + 2~z~} . (3) 
J 

The intensi ty is then 

F F *  = ~ ~ { ( A n A m + B n B m )  
n m 

+ i ( A m B n - A n B r n ) }  exp i ( n - m ) v /  . (4) 

This expression, being a function of F, is not  
cylindrically symmetrical .  In a fiber diagram, where 
the molecules are parallel, but  oriented a t  r andom 
about  the fiber axis, the relevant  intensi ty is cylin- 
drically averaged;  t ha t  is, averaged over all values 
of ~v. Equat ion  (4), when averaged,  is zero unless 
n = m, when 

= (A n , Bn).  (5) 
n 

An equivalent  expression has been derived by  
Frankl in  & K l u g  (1955), but  the form of (5) is more 
suitable for machine computat ion.  

The orders n, of the ]3essel functions on each layer 
line are defined by the equation 

1/c = n / P + m / p  , (6) 

where P is the pitch of the helix, p is the axial t ransla-  
~ion per asymmetr ic  unit,  and m is an integer. For  
molecules where there are ]c residues per repeat  uni t  
along the fiber axis, successive orders of Bessel func- 
tions on a given layer line will differ in order by ]c. 
In  general, except for helices with small intcgral  
screws, ]c is large enough so t ha t  the major  contribu- 
tion to the intensi ty on a given layer line is due to 
the lowest-order Bessel function which satisfies equa- 
tion (6). Under  these circumstances, it is not  necessary 
to calculate more than  the contribution of the lowest- 
order Bessel function on each layer line. However,  

Table 1 

(2) 3.0 residue 
helix 

(5) Modified 
(3) ~z helix (4) c~ helix ~ helix 

Residues per turn 

c-axis (A) 

Interval k between successive Bessel 
orders on each layer line 

Number of Bessel functions per layer 
line used in calculation 

36 residues 3 residues 22 residues 18 residues 23 residues 
in 7 turns per turn in 5 turns in 5 turns in 5 turns 

35.28 6.00 25.3 26-64 26-64 

36 3 22 18 23 

i 4 1 1 I 
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Fig. 1. The calculated averaged intensities for polypeptide models: (ct) ~ helix, (b) 3.0 residue helix, (c) ~ helix, (d) 0¢ helix, 
(e) modif ied ~ helix. The reciprocal lattice scale is the same for all five graphs. The C scale is shown in (b). The solid l ine 
represents the averaged intensity of a right-handed helix of L-amino acids (or a left-handed helix of ])-amino acids). The 
dashed line represents a left-handed helix of L-amino acids. 
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if k is small, as in the 3.0 residue helix (see Table 1, 
p. 98), then more than one Bessel function makes a 
substantial contribution to a given layer line. These 
are simply added, as shown in equation (5). 

Method of computat ion  

A punched-card method has been prepared which 
uses the IBM 604 computer. In this procedure a detail 
card is prepared for each point in reciprocal space for 
each atom of the asymmetric unit of the helix. Each 
detail card contains the atomic coordinates, r~., cp¢, zj, 
a punch to distinguish the various atomic species, the 
reciprocal-space coordinates 1 and R, and the ap- 
propriate value of n for each I. 

Values of sin 0, 2~r~R, cos {n(½~r-cpj)+2:tlz~/c} and 
sin {n(½z~-q)j)+2zdzj/c} are then computed with the 
use of a simple power series and are punched on to 
the detail cards. Appropriate values of fi (sin 0) and 
Jn(2:rr~R), taken from master decks, are also punched 
on to the detail cards. Finally, the quantities An, Bn, 
and 9. 2 An+B,~ of equation (5) are calculated and 
punched on to a deck of summary cards which are 
then listed and plotted in the form shown in Fig. 1. 

The transforms were evaluated at intervals of 
0.02 A -1 along R on all layer lines. Th~ Bessel- 
function master deck contains Jn (2x~rcR) to the nearest 
0"001 over the range 0.00 _< 27~rR < 25.00 at intervals 
of 0.05. These were originally obtained from the 
Tables of the Bessel Functions (1947). 

For these calculations, the asymmetric unit consists 
of five atoms, N, C~, Cfl, and carboxyl C and O. The 
atomic scattering factors were those obtained by 
graphical interpolation from the tables of McWeeny 
(1951) and contain no correction for thermal vibra- 
tion. Values of f (sin 0) were chosen to the nearest 
0.01, using intervals of sin 0 equal to 0.005 in the 
range 0.00_< sin 0_< 0.600 and 0.01 in the range 
0.600 < sin 0 < 1.000. 

For helical molecules which crystallize ~4th one 
helix in the unit cell, the appropriate intensity ex. 
pression becomes 

(An+Bn) FF*(R ,  v/, l/c) = ~ ~ 2 
n 

n > m  

+2  ~ .~, { (AnAm+BnBm)  cos ( n - m ) v  2 
m 

- ( A m B n - A n B m )  sin (n-m)y~}. (7) 

This expression is a function of ~p and it is therefore 
incorrect to use the cylindrically averaged intensity 
expression for crystalline material. For helices like the 
~¢ and ~ helix, however, where ( n - m )  is 18 and 22 
respectively, the yJ-dependent part of (7) will be small 
for the intense layer lines, and the cylindrically aver- 
aged expression (5) will provide a suitably accurate 
intensity pattern. However, computation of the trans- 

form for a crystalline 3.0 residue helix would require 
the use of the expression (7). 

Resul t s  

Fig. l(a-d) shows the averaged intensities for right 
and left-handed helices of L-amino acids in the (a) 
y helix, (b) 3.0 residue helix (Donohue, 1953), (c) 

helix and (d) a helix. These are all calculated with 
the fl-carbon atom present, hence they all represent 
possible models for poly-L-alanine. Various charac- 
teristics of these helices are listed in Table 1. The results 
for the a helix agree well with those of Pauling, 
Corey, ¥akel & Marsh (1955), when allowance is 
made for the fact that  Pauling et al. appear to have 
included a temperature factor in their calculation. 

I t  is interesting to note that  all of these transforms 
have an intense layer line near ~ = 0.2 /~-1. Further- 
more, this layer line is a sensitive index of the handed- 
ness of the helix, since there are marked differences 
between right- and left-handed members of the same 
series. 

Comparison of the transforms for the c¢ and 
helices shows that they have a remarkably similar 
general intensity distribution. This similarity can be 
greatly increased by adjusting the 7~ helix to give 23 
residues in 5 turns with c = 26.64 A, as shown in 
Fig. l(e). Examination of such a structure by the 
method of Low & Grenville-Wells (1953) shows a 
C-Co-N angle of 117½ ° with a hydrogen-bond length 
of 2.86 A and with the hydrogen atoms displaced 5 ° 
from the N-O line. However, this method for con- 
structing a polypeptide helix throws all the distortion 
into the a-carbon angle. By introducing small distor- 
tions in the rest of the molecule, e.g. removing the 
strict planarity of the peptide group, it is possible 
to effect a considerable reduction in the co-carbon 
angle distortion. For example, a 5 ° deviation from the 
planarity of the peptide group would reduce the 
a-carbon angle to 113½ °. Donohue (1953) points out 
that there might exist certain conditions under which 
the 7~ helix would be favored, although it is at first 
sight less stable than the a helix. We have, therefore, 
re-examined the data on synthetic polypeptides 
bearing in mind the striking similarity between the 
transforms of the a and 7~ helices. 

The main differences between the calculated dif- 
fraction patterns of the a and ~ helices occur on the 
equator and on the 18th layer llne. The 18th layer llne 
of the ~ helix is described by a first-order Bessel func- 
tion and is therefore non-meridional in character, in 
contrast to the zero-order Bessel function of the 
~-helix, which is meridional. In addition, the peak 
intensity of the 18th layer line of the ~ helix is between 
one-quarter and one-third that  of the a-helix. The 
equatorial patterns, however, differ greatly; in par- 
ticular, the a-helix transform has its first minimum 
at R = 0.16 fix -1. 
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The synthet ic  polypept ide ~-poly-L-alanine has been 
prepared as highly oriented and crystall ine fibers by  
Bamford  et al. (1954), and diffraction da ta  obtained 
from these fibers are presented by Brown & Trotter  
(1956). Because the side chains of poly-n-alanine con- 
sist only of me thy l  groups whose positions are known, 
its diffraction pa t te rn  is par t icular ly  suitable for 
comparison with the calculated transforms of poly- 
pept ide models. Brown & Trotter  have observed 
tha t  the 1.5 A reflection in c~-poly-L-alanine can best 
be indexed as (0,0,0,47). This appears as a well 
resolved intense reflection, and is accompanied by the 
(1,0,1,47) reflection, which is much  weaker. The 
orientat ion of the fiber is such tha t  this 1.5 A reflec- 
t ion can only be meridional.  In  addition, consideration 
of the relat ive intensit ies of the  equatorial  reflections 
of ~-poly-L-alanine clearly favor the ~ helix model. 
Thus, a l though there is a str iking s imilar i ty  between 
the t ransforms of the ~ and g helices, the differences 
are still sufficient so tha t  a clear dist inction can be 
made  between them for comparison with well oriented 
diffraction data.  I t  should be pointed out, however, 
t ha t  such a clear dist inction cannot be made between 
an ~ and a 7~ helix from an inspection of a poorly 
oriented fiber pat tern.  
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The molecular-location method described by Taylor (1954) has been found to fail under certain 
conditions. The method described in the present paper was designed to overcome these limitations 
and proves to be more satisfactory in other respects as well; it involves no approximations and the 
results are presented in the form of a contoured graph which is easier to assess than the pattern of 
bands produced in the earlier method. 

I n t r o d u c t i o n  

In  using the Fourier  or optical- transform approach to 
crystal-structure determinat ion,  the shape and orien- 
ta t ion of a molecule or group of atoms is de termined 
largely by  considering the disposition of the stronger 
reflexions; consideration of the weaker and absent  
reflexions m a y  then  give informat ion about  the 
position of the molecule or group relat ive to others in 
the uni t  cell (Hanson, Lipson & Taylor,  1953). 

A systemat ic  method of solving the position problem 
was suggested by  Taylor  (1954) and has been success- 
fu l ly  used on a number  of structures. During its 
appl icat ion to one par t icular  structure,  however, 
certain l imitat ions were discovered (Crowder, Morley 

& Taylor, 1957). The essential requi rement  for success 
in the earlier method  is t ha t  the reflexions to be used 
should be chosen to satisfy certain conditions which 
become more s tr ingent  as the symmet ry  of the cell 
increases. 

In  this  structure,  however, an accidental  s y m m e t r y  
relat ionship in the molecule made it  impossible to 
choose reflexions sat isfying these conditions. The new 
method,  briefly outl ined at  the Montreal  Conference 
(Taylor, 1957) and  now to be described in detail ,  
was developed to overcome this difficulty. I t  has been 
found to have a number  of addi t ional  advantages  over 
the earlier method.  In  part icular ,  the  results are 
presented in a more elegant form. The final position 


